UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1102

ASSESSMENT : MATH1102B

PATTERN

MODULE NAME : Analysis 2

DATE : 31-May-11

TIME : 14:30

TIME ALLOWED: 2 Hours 0 Minutes

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Consider a function $f:(0,+\infty)\to\mathbb{R}$ and a point $x_0\in(0,+\infty)$. Define the meaning of the statement "the function f is differentiable at the point x_0 ".
 - (b) Consider the function $f:(0,+\infty)\to\mathbb{R}, \ f(x)=\sqrt{x}$ and a point $x_0\in(0,+\infty)$. Use the definition from (a) to prove that this function is differentiable at the point x_0 and that $f'(x_0)=\frac{1}{2\sqrt{x_0}}$. Here you may use without proof the fact that the function \sqrt{x} is continuous.
 - (c) State and prove the theorem about the relationship between differentiability and continuity.
 - (d) State and prove the Quotient Rule.
 - (e) Consider the function $f:(0,+\infty)\to\mathbb{R},$ $f(x)=\frac{1}{\sqrt{x}}$. Prove that this function is differentiable and that $f'(x)=-\frac{1}{2x^{3/2}}$.
- 2. (a) Define what it means for a function $f:[a,b] \to \mathbb{R}$ to achieve a global maximum at a point $c \in [a,b]$ and a global minimum at a point $d \in [a,b]$.
 - (b) State the Attainment of Bounds Theorem.
 - (c) Suppose that the function $f:[a,b]\to\mathbb{R}$ is differentiable at the point $c\in(a,b)$ and suppose that f achieves a global maximum at the point c. Prove that f'(c)=0.
 - (d) Find, with justification,

(i)
$$\max_{x \in [0, \pi/2]} \left(\frac{x}{\sqrt{2}} + \cos x \right),$$

(ii)
$$\max_{x \in [-\pi/2, 0]} \left(\frac{x}{\sqrt{2}} + \cos x \right),$$

(iii)
$$\max_{x \in [-\pi/2, \pi/2]} \left(\frac{|x|}{\sqrt{2}} + \cos x \right).$$

- 3. (a) Suppose that the functions $f,g:(-1,1)\to\mathbb{R}$ are differentiable and that f'(x)=g'(x) for all $x\in(-1,1)$. Prove that f(x)=g(x)+c for all $x\in(-1,1)$, where c is a constant.
 - (b) Define the notion of the radius of convergence of a power series.
 - (c) State the theorem about the differentiability of power series.
 - (d) Find the radius of convergence of the power series $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}.$
 - (e) Consider the function $g:(-1,1)\to\mathbb{R},$ $g(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{2k+1}x^{2k+1}$. Prove that

$$g'(x) = \frac{1}{1+x^2} \,.$$

- (f) Prove that $\arctan x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$ for all $x \in (-1,1)$. Here you may use without proof the fact that $\arctan' x = \frac{1}{1+x^2}$. [Hint: you may find it helpful to use the results from (a) and (e).]
- 4. (a) State Cauchy's Generalisation of the Mean Value Theorem.
 - (b) Let n be a nonnegative integer, let a < 0 < b and let $f:(a,b) \to \mathbb{R}$ be n+1 times differentiable. Put

$$P_n(x) = f(0) + f'(0) x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1} + \frac{f^{(n)}(0)}{n!} x^n,$$

$$R_n(x) = f(x) - P_n(x).$$

Given an $x \in (a, 0)$, prove that $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$ for some $\xi \in (x, 0)$.

(c) Use the result from (b) to prove that $\ln\left(\frac{1}{2}\right) = -\sum_{n=1}^{\infty} \frac{1}{n2^n}$.

- 5. (a) Let $f:[a,b] \to \mathbb{R}$ be bounded.
 - (i) Define the lower Darboux sum L(f, P) and the upper Darboux sum U(f, P) of f with respect to a given partition P of the interval [a, b].
 - (ii) Define the lower Riemann integral $\int_a^b f(x) dx$ and the upper Riemann integral $\int_a^b f(x) dx$.
 - (iii) Prove that $\int_a^b f(x) dx \leq \overline{\int}_a^b f(x) dx$. Here you may use without proof the fact that $L(f,P) \leq U(f,Q)$ for any pair of partitions P and Q.
 - (iv) Define what it means for f to be Riemann integrable on [a, b].
 - (b) State and prove Riemann's Criterion for Integrability. Here you may use without proof the refinement lemma: if the partition P' is a refinement of the partition P then $L(f,P) \leq L(f,P')$ and $U(f,P) \geq U(f,P')$.
 - (c) Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove that f is Riemann integrable on [a,b].
 - (d) Give an example of a bounded function $f:[-1,1] \to \mathbb{R}$ which is not continuous on [-1,1] but is Riemann integrable on [-1,1]. Justify your answer. You may use any result from the course.
- 6. (a) Define what it means for a function $f:[1,+\infty)\to\mathbb{R}$ to be locally Riemann integrable.
 - (b) Let $f:[1,+\infty)\to\mathbb{R}$ be locally Riemann integrable. Define what it means for f to be integrable on $[1,+\infty)$ in the improper sense.
 - (c) Use the definition from (b) to prove the existence of the improper integral

$$\int_{1}^{+\infty} \frac{1}{x^2} dx.$$

- (d) State the Comparison Theorem for Improper Integrals.
- (e) State the theorem relating the integrability, in the improper sense, of the functions f and |f|.
- (f) Prove the existence of the improper integral $\int_{1}^{+\infty} \frac{\sin x}{x^2} dx$. [*Hint:* you may find it helpful to use the results from (c), (d) and (e).]
- (g) Prove the existence of the improper integral $\int_{1}^{+\infty} \frac{\cos x}{x} dx$. [*Hint:* you may find it helpful to integrate by parts.]

MATH1102